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A mathematical model consisting of two partial differential equations is used to study the 
long-range transport of sulphur dioxide and sulphate over Europe. The discretization of the 
first-order space derivatives (the advection terms) is carried out by a pseudospectral (Fourier) 
algorithm. A special technique is applied in the discretization of the second-order space 
derivatives (the diffusion terms). Two large systems of ordinary differential equations are 
solved at each time-step. It is shown that these systems can efficiently be treated by a variable 
stepsize variable formula method (VSVFM) based on the use of predictor-corrector schemes. 
The stepsize selection strategy and the formula selection strategy are discussed in detail. An 
attempt to carry out both an accuracy control and a stability control is made at each time- 
step. The great efficiency of the VSVFM implemented in our software as well as the reliability 
of the results are illustrated by numerical experiments, in which real meteorological data (for 
1979) at the grid-points of a space domain covering the whole of Europe were used. The main 
ideas, implemented in the time-integration part, might be applied in many other situations, 
where the systems of ordinary differential equations arising after the space discretization are 
only moderately stiff (so that the stability requirements are dominant over the accuracy 
requirements on a large part of the time-interval but the use of implicit time-integration 
algorithms that require solving systems of algebraic equations at each time-step is not 
justified). As an illustration only it should be mentioned that such an application has been 
carried out in connection with models describing long-range transport of nitrogen pollutants 
over Europe. 

1. INTRODUCTION 

Systems of partial differential equations (PDEs) arise often in models simulating 
physical phenomena in different fields of science and engineering. Splitting up 
techniques are commonly used to divide the computational process into several 
stages. The time derivatives are discretized during one of these stages. It will be 
shown how the computations during the time-discretization can be fully automized 
when predictor-corrector schemes are in use. It will be demonstrated that the 
automization of the time-discretization may lead to a considerable increase of the 
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efficiency. The ideas are fairly general and can be applied in connection with many 
different models. In order to facilitate the description, models describing long-range 
transport of sulphur di-oxide (SO,) and sulphate (SO,) will be considered. Moreover, 
some salient features of these models will be exploited to reduce the computational 
work. However, the programs are well-structured, [46], and can easily be modified 
for some other processes. As an illustration only, it should be mentioned that the 
programs have successfully been used to study long-range transport of nitrogen 
pollutants over Europe. 

The mathematical model treated in this paper is defined as 

XE [~,,b,]~ YE la27 ~,I~ z E [a39 631, tE [u,bl, 
C(Ql, Y, z, t) = c(b, 9 Y, z, t), C”@lY Y, z, t> = C”(b, 5 y, z, t), 
c(x, a, T z, t) = c(x, b,, z, t), L-*(X, ~2, z, t) = c*(x, b,, z, t), 

W-G Y, a3, t) a+, Y, b,, t) ac*(x, y, a3, t) 
az = az = 3Z 

= a~*@, Y, b,, t> = o 
t3Z 

3 

c(x, Y, z, a> = f(x, y, z), c*(x, Y, z, a> =f*(x, Y, z), 
f and f * being given. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

The quantities involved in the above model are interpreted as: (i) the unknown 
functions c(x, y, z, t) and c*(x, y, z, t) are concentrations of SO, and SO, in the 
atmosphere, (ii) U(X, y, z, t) and u(x, y, z, t) are wind velocities along the Ox and Oy 
axes, respectively, (iii) K,, KY and K, are diffusion coefficients, (iv) Q(x, y, z, t, c) 
and Q*(x, y, z, t, c, c*) represent different sources and/or sinks. 

The model described by (l.lt(1.7) is obtained by the use of the following 
assumptions: (a) K, and K, are positive constants, (b) K, is a non-negative function, 
which is piecewise constant in z (more precisely, for each (x*, y*, t*) with 
x* E [a,, b,], Y” E [a,, b21 and t* E [a, b] there exists a non-negative number h, 
which is called the mixing height, such that K,(x*, y*, z, t*) = 0 if h <z < b, and 
K,(x*, y*, z, t*) does not vary in z if a3 <z <h) and (c) there is no vertical 
advection (this means that w(x, y, z, t) = 0, where w is the vertical component of the 
wind velocity). Experience shows that satisfactory results can be achieved under these 
assumptions when long-range transport of air pollutants is simulated. This will be 
illustrated by Experiment 4 in Section 5. 

A large system of ordinary differential equations (ODES) is obtained after the 
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discretization of the space derivatives in (1.1~( 1.2). Predictor-corrector schemes can 
conveniently be applied in the solution of this system of ODES at the points of some 
grid 

r,= {t,/t,=a, t&, <t, (k= l(l)K), tK=b, KE N} (1.8) 

defined on the time interval [a, b]. Assume that a constant time-stepsize, At = 
t, - t k-l = (b - a)/K (k = l(1) K), is used in the time-integration algorithm selected. 
Denote 

22 = (24, ?I), u* = (Il4l)-‘, (] . /I being some appropriate norm. (1.9) 

If a predictor-corrector scheme is used, then it is necessary to restrict the time- 
stepsize At as follows 

At<du* (1.10) 

in the efforts to achieve stable computations. The constant d depends (see [6, 47, 
511): (A) on the time-integration algorithm and (B) on the space discretization. 
Assume that both the time-integration algorithm and the space discretization are 
fixed. Then one can evaluate U* (by checking the appropriate input data) and 
determine a value for At, using (l.lO), that will hopefully give stable results. 
However, if the time interval [a, b] is long, then the value of At so found may lead to 
a very inefficient computational process. Indeed, two or three stormy days will give a 
very small value of At and the computational process will be very expensive. It must 
be emphasized that the system of ODES is normally very large. The number of 
equations is often larger than lo4 when the model is three-dimensional. Our 
experiements with a 32 x 32 x 9 grid in the space domain gave rise to a system of 
18,432 ODES. This shows that the efficiency of the computational process is highly 
desirable and that the three-dimensional model can be used in practice only if one is 
able to ensure great efficiency of the calculations. 

The main purpose in this paper is to demonstrate that the efficiency can be 
increased considerably if the old-fashioned manner of implementation of the time- 
discretization algorithms with a constant At is replaced by a modern application of a 
variable time-stepsize. The usefulness of this approach can be justified as follows. 
Consider the grid (1.8) and denote by 

&=tk-tk-,, k = l(l)& 

the time-stepsize which is to be applied at time-step k. Then (1.10) can be replaced by 

At, Q du;, (1.12) 

where uf is inverse of the norm of the wind velocity vector C in some neighbourhood 
of the current integration point t,. It is clear that in general uf will be larger than u* 
(and for many grid-points t, may be considerably larger). Therefore (1.12) will 
normally allow us to select the time-stepsize in a more flexible and, what is more 
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important, in a more efficient way than (1.10). In order to increase the flexibility and 
the efficiency one can also change the time-integration algorithm from one step to 
another. The implementation of the above ideas leads to the construction of a 
variable stepsize variable formula method (VSVFM; see, for example [40-44]) for 
the time-discretization part of the solution process. 

In the following sections we shall show how a VSVFM is built-in in our package 
ADM (the constant stepsize constant formula part of ADM is fully documented in 
[46], the different algorithms applied in the subroutines of ADM are discussed in 
145-511). We shall also show that the implementation of a VSVFM leads to a full 
automization of the time-discretization part of the solution process. All problems 
connected with the choice of an optimal time-stepsize, which is often a very difficult 
task, are completely left to the code. As an additional benefit an error estimation of 
the result obtained by the time-discretization algorithm is easily computable. Thus the 
code will attempt to keep the errors in the time-integration algorithm smaller than an 
error tolerance TOL prescribed by the user. From the above analysis it becomes 
apparent that by varying both the time-stepsize and the formula (the time- 
discretization algorithm) the code not only attempts to preserve the stability during 
the computational process, but also attempts to keep the errors in the time-integration 
part of this process under a prescribed (in advance) level. In this way both the 
robustness of the code and the reliability of the results are considerably increased. 
This means that runs over long intervals [a, b] can successfully be carried out (and, 
in fact, have been carried out by us) in an efficient, reliable and robust way when a 
flexible choice of the time-stepsize and the formula is allowed at each time-step. 

2. COMPUTATIONS AT AN ARBITRARY TIME-STEP 

Consider the grids 

X,= {x,/x,=a,,x,=x,-, +Ax,Ax= (b,-a,)/2M,x,,=b,,ME N), (2.1) 

Y, = Lv,/uo = a2, Y, = yn-, + 4~4~ = (b, - a,)/W yZN = b,,NE N), (2.2) 

Z, = (z,/zo = a3, zp = zp-, + AZ, AZ = (b, - a,)/P, zp = b,, P E N}, (2.3) 

~~=xx,x YNXZP. (2.4) 

Grid ,‘? contains L = (2M + 1)(2N + l)(P + 1) grid-points. In the numerical 
treatment of the model (l.l)-(1.7) the continuous functions and the space derivatives 
of the unknown functions are replaced (at the beginning of each time-step) by grid 
functions each of which contains L components. Each component of a grid function 
is a value of the corresponding continuous function on some point of grid Y. 

The first-order space derivatives are discretized by using a pseudospectral 
(Fourier) algorithm; [6, 19, 261. This means that:(i) a trigonometric interpolation 
polynomial, which is a truncated Fourier series of c (or c*), is built by the use of the 
values of c (or c*) at the points of grid Y (or part of them), (ii) the derivative of the 
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trigonometric polynomial with regard to x (or y) is calculated, (iii) the values of the 
derivatives of the trigonometric polynomials at the grid-points under consideration 
are accepted as values of the first order derivatives at the same grid-points. The 
subroutines of the FFT package developed by Swarztrauber [36] are attached to 
ADM as a black box in order to speed up the computations in the above algorithm. 
Our implementation of the pseudospectral (Fourier) algorithm is discussed in 
[45-511. 

A special procedure is used in the treatment of the terms containing second-order 
derivatives (this procedure is justified in [48, 501, but it has been applied in [ 11). By 
this procedure it is possible: (i) to calculate the corrections which are to be 
performed in the solution vector and which are due to the diffusion terms, (ii) to 
remove the stability restrictions on the time-stepsize due to the diffusion terms ([50]). 
The use of the special procedure is based on the basic assumptions made (see 
Section 1 and note the assumption that K, and K, are positive constants could be 
replaced by an assumption similar to the assumption made for KL). 

The time-discretization will be discussed in the next sections. 
Let t E [a, b] be an arbitrary but fixed value of the time-variable. Assume that the 

values of c(x, y, z, t) for V(x, y, z) E ,Y are given. The algorithm used in ADM to 
calculate the values of c(x, y, z, t + At) for V(x, y, z) E .Y can be described as follows. 

ALGORITHM 2.1. Computing approximations of c(x, y, 2, t + At) for 
V(x, Y, z) E p’. 

Step A. For each parallel to Ox grid-line of ,Y perform the following operations: 
(Al) carry out a forward FFT using the values of c(x, y, z) on the grid-line under 
consideration, (A2) calculate approximations to the Fourier coefficients of 
&(x, y, z, t)/ax on the grid-line under consideration, (A3) multiply the Fourier coef- 
ficients of both c(x, y, z, t) and &(x, y, z, t)/ax (on the grid-line under consideration) 
with appropriate exponentials of type exp(-,u*K,d,At) (d, being a constant; p = 
0, f 1, f2 )...) +M), (A4) perform a backward FFT for both c(x, y, z, t) and 
&(x, y, z, t)/ax on the grid-line under consideration. 

Step B. For each parallel to Oy grid-line of .I? perform the following operations: 
(B 1) carry out a forward FFT using the values of c’(x, y, z, t) (E(x, y, z, t) being the 
transformed after Step A solution c(x, y, z, t)) on the grid-line under consideration, 
(B2) calculate approximations to the Fourier coeficients of X(x, y, z, t)/ay on the 
grid-line under consideration, (B3) multiply the Fourier coefficients of both 
?(x, y, z, t) and X(x, y, z, t)/ay (on the grid-line under consideration) with 
appropriate exponentials of type exp(-v*K,d,At) (d, being a constant; v = 
0, f 1, +2 ,...) fN), (B4) perform a backward FFT for both c(x, y, z, t) and 
133(x, y, z, t)/ay on the grid-line under consideration. 

Step C. Use some time-integration algorithm to calculate approximations (at the 
points of 55’) to F(x, y, z, t), where 4x, y, z, t) is the transformed after Step B solution 
f(x, y, z, t). 
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Step D. For each parallel to Oz grid-line (and only for the points at which 
K, > 0) perform the following operations: (Dl) carry out a forward even FFT using 
the values of C(x, y, z, t + At) on the grid-line under consideration, (D2) multiply the 
Fourier coefficients of ?(x, y, z, z + At) (on the grid-line under consideration) by 
appropriate exponentials of type exp(-p*K,d,At) (d, being a constant; p = 
0, 1, 2,..., P), (D3) perform a backward even FFT using the modified (after Step D2) 
Fourier coefficients of C(x, y, z, t + At) and accept the results as values of the desired 
solution c(x, y, z, t f At) at the points of the grid-line under consideration. 

Remark 2.1. Algorithm 2.1 can also be used to calculate approximations to the 
values of c*(x, y, z, t t At) for V(x, y, z) E L?‘. In this way it is possible to handle 
(1.1) and (1.2) separately at each time-step. This is very convenient (let us mention 
only the fact that if the results obtained in the consideration of (1.1) are not accep- 
table, then the stepsize is reduced and the calculations are repeated without attempt 
to carry out any calculations with (1.2); see Section 4). However, this procedure can 
be applied only when Q does not depend on c*. If Q depends on c*, then 
Algorithm 2.1 should be applied to vector (c, c*)’ (instead of to vector c) in other 
words (1.1) and (1.2) should be considered simultaneously at each time-step. 

Denote by u(t), v(t), e(t), e*(t), g(t) and g*(t) the grid-functions (on Y) 
corresponding to the continuous functions u, v, Q, Q*, c and c* respectively. The 
performance of the first two steps in Algorithm 2.1 leads to replacing (1.1) and (1.2) 
by two systems of ODES (the independent variable t is omitted): 

ds --- 
;5;=(lLs+ VPSP)g+Q. d$ 

--- 
(US + VPSP)g* + Q*, (2.5) 

where S and S are L x L quasi-diagonal matrices induced by the pseudospectral 
operators used in the discretization of the first-order space derivatives. S contains 
(2N+ l)(P t 1) diagonal blocks each of which is a (2M t 1) X (2M + 1) skew- 
symmetric matrix. S contains (2M + l)(P t 1) diagonal blocks each of which is a 
(2N + 1) x (2N t 1) skew-symmetric matrix. p is a permutation matrix. S, S and p 
are never used explicitly in the computational process (this would require very much 
storage). The vectors 

--- 
f =(f!rS+ VPSP)g+Q, 

--- 
f * = (US + vPsP)g* t Q* (2.6) 

are calculated and the systems 

(2.7) 

are solved. However, the matrices S and S are needed in the stability analysis. 
The solution of systems (2.7) is the main topic of the discussion in the next 

sections. More details about Algorithm 2.1 and/or the different parts of this 
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algorithm can be found in [45-5 11. In these references many topics, which are not 
discussed in this paper (as, for example, the periodicity on the boundaries), are also 
treated. 

3. AUTOMATIC INTEGRATION OF THE SYSTEMS OF ODES 
OBTAINED AFTER THE SPACE DISCRETIZATION 

Consider grid Tk from (1.8), assume that a constant time-stepsize At is used and 
denote g, = g(t,J. Special PECE (predictor-evaluation-corrector-evaluation) schemes 
of the type 

(prediction), (3.1) 

.&=(uS+VPSP)&+Q (evaluation), (3.2) 

gk=Clgk-l+ (l-a)gk-, +AtP,.L+At Zr: Pifk-i (corrector), (3.3) 
i=l 

--- 
fk = (us + vpsp) g, + Q (evaluation) (3.4) 

are used in the solution of the first system (2.7). The same schemes are also applied 
in the solution of the second system (2.7). It is assumed that: (i) GE R, a E [0, 2) 
(this pair will be chosen so that the stability properties of the PECE scheme close to 
the imaginary axis are as good as possible, [5 11, (ii) the set {@i}i=, is determined so 
that the predictor (3.1) is a linear multistep formula of order s, (iii) the set {Pi}fZO is 
determined so that the corrector (3.3) is a linear multistep formula of order s + 1. 
The PECE scheme (3.1~(3.4) with (i)-(iii) satisfied is called an (6, a) - P,EC,+ ,E 
scheme. Such schemes have been studied in [37, 40, 41, 43, 44, 51-541. 

In order to increase the efficiency of the computational process the use of both 
different stepsizes and different (g, a) - P,EC,+ ,E schemes at different parts of 
interval [a, b] should be allowed. Assume that grid T, is not equidistant and let At, 
be the stepsize which has to be used at step k. Consider a set F of J (6 a) - 
P,EC,+ ,E schemes. Denote the elements of X by F,, F?,..., FJ. If varying both the 
stepsize and the element of set X from one step to another is allowed and if the 
element Fj EST has to be specified at step k, then the formulae corresponding to 
(3.1) and (3.3) must be rewritten as 

gk=Gjgk-l + (1 -cj)gk-,+Atk 2 P;.i(gkj)fk-it 
i=l 

(3-5) 

gkzajgk-l + (l-aj)gk-,+AtkPjo(~~)j;,+Atk 2 pji(ikj)fk-i, (3.6) 
i=l 
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where index j shows that (3.5) and (3.6) are corresponding to element Fj E fl, while 
by the notation pji(ikj) and pji(h,i) the fact that these coefficients are dependent on 
vector iU = (Ark, At,- 1 ,..., Atk-sj+l) (i.e., on the last sj stepsize used in the time- 
integration) is expressed. The methods based on (3.5) and (3.6) are called predictor- 
corrector variable stepsize variable formula methods (PC VSVFMs); in [40, 41, 43, 
44 ] it is shown that the fundamental properties (consistency, zero-stability and 
convergence) of the constant stepsize constant formula methods (3.1~(3.4) are 
preserved in the transition to PC VSVFMs based on (3.5)-(3.6). Therefore we may 
concentrate our attention on the problems connected with the accuracy control and 
stability control when PC VSVFMs based on (3.5)-(3.6) are in use. 

Consider again (3.1)-(3.4). The local truncation errors made in the computations 
at step k by this scheme are (see [23, 24, 34)): 

Fk = es+ ,(At)’ gCS+ ‘)(t,) + O((At)s+ ‘), Tk = O((At)“+ ‘) (3.7) 

for the predictor and corrector, respectively (es+, being a constant dependent on the 
particular choice of the predictor only). The expressions for Fk and T, are derived 
under the assumptions (see, for example, [23, pp. 27-301): (a) the previous values of 
the unknown function are calculated exactly, (b) the stepsize is sufficiently small. 
Nevertheless, the real-life computations indicate that these relationships can 
successfully be used to build-in both an accuracy control and a stepsize selection 
strategy in a code for solving ODES. Indeed, observe that under assumptions (a) and 
(b) we have 

Fk z g(fk) - &k, T, = dfd - gk (g(tk) is the exact solution at tk). (3.8) 

Therefore it is clear that the non-negative real numbers 

ERROR = /] g, - gk]l (ERROR* = /] gt - it ]] for the second system (2.7)) (3.9) 

give us an estimation of the principal part of the local truncation error made in the 
calculations with the predictor formula (3.1). It is also clear that this estimation is 
rather conservative (because the corrected values, g, and gt, are calculated with a 
formula whose order is higher than the order of the predictor). This means that we 
can expect the actual error to be smaller when the calculations are stable. It is 
apparent that the error estimations (3.9) can also be used in connection with 
(3.5~(3.6) (at least when some restrictions on the stepsize selection strategy are 
imposed, [40, 41, 43, 441). Assume now that some error tolerance TOL is prescribed. 
Then g, is considered as acceptable if 

ERROR < TOL (the test for gz is similar; TOL” # TOL can be used). (3.10) 

If the acceptability criterion (3.10) is not satisfied, then the calculations have to be 
repeated by specifying a smaller At,. If the acceptability criterion (3.10) is satisfied, 
then the code proceeds with Part D of Algorithm 2.1 (or with the next step, when the 
model is two-dimensional, which is formally expressed by setting K, = 0). If (3.10) is 

581/55/2-E 
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satisjied, then it is very important to determine an optimal value for the next stepsize 
At k+ 1 by the use of which we can expect to calculate acceptable approximations g,, , 
and gt++l (i.e., we can expect (3.10) to be satisfied and, thus, it will not be necessary 
to repeat the calculations at step k + 1 with a smaller stepsize). This can be achieved 
by the use of the following device. Assume that a formula corresponding to Fj E X is 
used at time-step k. Then (neglecting the terms containing (At,)‘j+ ‘) we have 

ERROR =: ) c,,, ,(h-,,.)( (AtJj 11 g@+ ‘)(t,)l(, (3.11) 

and a similar relation holds for ERROR*. The next stepsize Atk+, should be deter- 
mined so that 

I’Sj+l(‘k+l,.i 
)I (tk+ ,)‘j 1) g(‘j+ ‘)(t,J “N TOL 

(g* and TOL* should be related in a similar way). Assume that 

Csj+ I(h;.+ l,j) z csj+ *(lkj), gcsi+ l)(t,+ 1) z gcsj+ ‘)Ctk) 

(3.12) 

(3.13) 

(and that a similar relation holds for g*). An optimal stepsize, by which acceptable . . approxtmations gk+ i and gk*, i should be expected at the end of step k + 1, can be 
calculated by 

At k+,=amin 

where 0 < 6 < 1 is a constant by which an attempt to compensate for the use of 
(3.13) with an equality sign is made. 

The value for At k+, given by (3.14) is commonly used in the ODE solvers ([ 7-16, 
20-22, 27, 291). H owever, it must be emphasized that this use is based on the expec- 
tation that the computations at step k + 1 are stable. Normally, no stability control is 
made in the general-purpose software (see the above references again). It is expected 
that the code will reject the step and repeat the calculations with a smaller stepsize 
when Atkfl is too large and the computations are not stable; this auticorrelation 
mechanism is discussed in [28] ( see also [30, 531). However, the autocorrelation is 
carried out by some extra computational effort, which is very considerable when the 
system of ODES is large (and this is the case when long-range transport phenomena 
are treated numerically). Therefore one should attempt to ensure stability in order to 
prevent rejections of steps and extra computations. For the special class of problems 
under consideration this can be done in a very cheap and efficient way. By the use of 
the results from 147, 511 it is easily seen that one should expect the computational 
process to be stable if 

(3.15) 
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where U;, = max(] u(x, y, z, t)]), V;, = max(] v(x, y, z)]) (the maxima being taken for 
x E [a,, b,], y E [a*, b2], z E [Us, b3] and t E Tz; Tt being a neighbourhood of the 
current integration point tk), and himag being the length of the absolute stability 
interval on the positive part of the imaginary axis containing the origin (]5 11). 
Strictly speaking, (3.15) will ensure stability only in the case: u = 0, Q = 0, u = U* 
(u* being a constant). In general, one can expect the results to be stable also in the 
case where the above conditions are not satisfied when there is a sufficiently large 
domain to the left of the imaginary axis that belongs to the absolute stability region 
of the time-integration scheme under consideration. This requirement may be crucial 
in some situations. We shall illustrate this by the following example. Let (/1 > 0): 
u = 1, u z 0, Q = -1~. Then the first system (2.5) can be rewritten as (1 being the 
identity matrix): 

& ,,=sg-Ag=(S-Z)g. (3.16) 

The eigenvalues of S are purely imaginary ([ 19, 5 1 I). Therefore only the length of 
the absolute stability interval on the imaginary axis is of interest when A = 0. Denote 
the eigenvalues of S by vi (i = O(1) 2M) and the eigenvalues of T= S - AZ by lui 
(i=O(l)2M). s ince Tz =,uz (z being a vector with 2M + 1 components) implies 
Sz = (,u + A)z, the eigenvalues of T and S are related by pi = vi - J. (i = 0( 1) 2M). 
Thus the eigenvalues of T are in the negative half-part of the complex plane. In the 
long-range transport pollution models different kinds of deposition are often 
introduced by terms -AC, but the value of J is typically small compared with the 
modulus of the largest eigenvalue of matrix S. 

The following conclusions can be drawn from the above analysis as well as from 
many experiments carried out with long-range transport models: 

(i) The use of a stability check in an attempt to ensure stable computations is 
very efficient for this class of problems. We are not interested in carrying out 
computations with systems containing, say, 18432 ODES which may be rejected (and 
if so should be repeated) only because the stepsize does not satisfy the stability 
requirements. We are interested in preventing rejections and this can efficiently be 
done if check (3.15) is carried out (see the experiments in Section 5; note also that 
Experiment 4 indicates that check (3.15) together with the other checks in ADM not 
only ensure stable computations but also provide reliable results). 

(ii) Formula (3.15) shows clearly that we are interested in time-integration 
algorithms for which himag is large. Algorithms with increased stability regions have 
been developed in [ 18, 20, 33, 37, 521. The ideas used in these references have been 
applied to develop special algorithms with large himag (see also [51]). 

(iii) The algorithms with large hima are stable in a narrow strip along the 
imaginary axis (see Fig. 4.1). The last part of the analysis given in this section shows 
that this may be insufficient sometimes. Therefore a time-integration algorithm with a 
large stability region must be included in the code. 
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ALPHA= 4.85 ALPHA t=-0.05 - CONllWOUS LINE 

ALPHA= i .80 ALPHA 4=-O .85 - DASHES 

ALPHA= I .OO ALPHA{= 4 .OO - DOTS 

THE REAL AXIS 

FIG. 4.1. Stability properties of the basic predictor-corrector schemes selected for package ADM. 
The parameters ALPHA and ALPHA1 correspond to a and I?, respectively. The third scheme (which is 
an Adams predictor-corrector scheme) is normally selected by the code only when the deposition rate is 
very high. 

In the next section the time-integration schemes actually used in ADM will be 
presented and the rules for changing the stepsize and/or the algorithm will be 
discussed. 

4. IMPLEMENTATION OF AN AUTOMATIC INTEGRATION OPTION 
IN PACKAGE ADM 

The number of elements in the particular set Sr of basic (&, a) - P,EC,+ ,E 
schemes used in ADM is J = 3. The values of parameters cx’ and a as well as the 
values of sj (j = 1,2,3) for the predictor-corrector schemes chosen are given in 
Table 4.1. The values of the parameters himag (for the predictor-corrector schemes in 
set ;T) are also given in Table 4.1. It is necessary to emphasize that: (i) the values of 
h ,mag for the algorithms chosen by us are larger than the values of himag for the 
corresponding Adams schemes which are commonly used in the general-purpose 
solvers for non-stiff ODES (see, e.g. [ 10, 11, 20-22, 27, 29]), (ii) the schemes chosen 
are absolutely stable in sufficiently large domains to the left of the imaginary axis 
(see Fig. 4.1). Moreover, an Adams P,EC,E scheme, which is very useful in some 
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TABLE 4.1 

Some Important Characteristics of the Basic (t?, a) - P,EC,+ , E Schemes 
Applied in the Particular Set 9 Selected for Package ADM” 

Fi cij ai ‘1 himag 

F, -0.05 1.85 2 1.95 
F, -0.85 1.80 3 1.70 
F3 1.00 1 .oo 3 1.17 

’ Notice that the last scheme is a well-known Adams predictor-corrector method; its parameter hima 
is considerably smaller than the values of this parameter for the other two schemes, but its stability 
region is large and, therefore, it is useful in the cases where the deposition rate is high. 

extreme situations (that occur very seldom for our class of problems) is included in 
set ,F. 

The stepsize selection strategy is very simple. Let TOL = TOL* be the error 
tolerance prescribed by the user. Introduce TOL2 = 4 TOL and TOLl = TOL/4. The 
approximations g, and gt are considered as acceptable when 

II g,? - &T II G TOL2 II g: II. (4.1) 

If the first relation in (4.1) is not satisfied, then the step is rejected (without any 
attempt to calculate an approximation to gt) and the calculations are repeated with a 
stepsize At,/2. If the second relation in (4.1) is not satisfied, then again the step is 
rejected and the calculations are repeated with a stepsize At/2. If any of the relations 
in (4.1) indicates failure 3 times successivaly, then a special restarting procedure with 
a one-step method is activated (a similar device is used in [lo, 11, 29, 541; the 
necessity of such a procedure is justified in [29]). If any of the following relations is 
satisfied, 

TOL 11 gkli < // gk - ik’kli < TOM /I gki/, 

TOL II gi+ II G II s,? - ii? II G TOJJ II gk* I/> 
(4.2) 

then the step is considered as successful, but the stepsize (for the next step) is reduced 
by setting: Atkf , = 0.75Atk. If any of the following relations is satisfied, 

TOLl I/ gk/l < 11 gk - i?kkii < TOL I/ gkil, 

TOLl II d II G II gk* - Sk* II < II siT II) 
(4.3) 

then the stepsize is not changed when the last 5 stepsizes are not equal. If the last 5 
stepsizes are equal, the the stepsize is increased (the increase being considerable but 
not very large) by setting: Atk+ 1 = 1.25At,. If 

11 gk - fkkil < TOLl it gkl/ * iI gk* - Sk* 11 < ToL1 /I .!d/, 

then the stepsize is increased (using (3.14) with 6 = 0.9). 

(4.4) 
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Several additional rules are used in the stepsize selection strategy. The most 
important of these additional rules are: (A) the stepsize is not increased if the change 
is not significant (ifAtk+JAtk < 1.05, then Atk+, = At, is used at step k + l), (B) the 
stepsize is not increased with a very large amount (zy Atk+,/Atk > 2, then 
At,+ 1= 2At, is used at step k + 1). 

The main rules in the formula selection strategy can be outlined as follows. 
Consider the beginning of the computations at step k (or the beginning of the 
computations at the rejected step k, when some of acceptability criteria have failed). 
The right-hand side of (3.15) is calculated for the 3 schemes in set 3 (see Table 4.1). 
Let STABl, STAB2 and STAB3 be the calculated values of the right-hand side of 
(3.15) by the use of Pi, F, and F,, respectively. If At, < STAB3, then F, is used at 
step k (without changing At,J. If At, < STAB2 and At, > STAB3, then F, is used at 
step k (without changing AtJ. If At, < STAB1 and At, > STAB2, then F, will be 
used at step k (without changing At&. If At, > STABl, then the stepsize is reduced 
(to satisfy the stability requirements) by setting: At, = STAB1 and F, is used at 
step k. 

Finally, it should be mentioned that a special starting procedure has to be used in 
the calculations of the first two approximations (gk and gc for k = 1,2). A starting 
procedure whose predictor is the first-order explicit Euler formula and the corrector is 
the second order trapezoidal rule is attached to package ADM. The same procedure 
is used as a restarting procedure, when the code rejects the step 3 times successively 
(see the beginning of this section). 

5. EFFICIENCY OF THE VSVFM OPTION OF PACKAGE ADM 

From Section 4 it becomes apparent that some extra computational work per step 
is needed when a VSVFM is implemented in the time-integration part of 
Algorithm 2.1 (Step C). This extra work is needed to carry out: (a) accuracy control, 
(b) stability control, (c) changes of the stepsize and (d) changes of the formula. 
Therefore the crucial question is: can we obtain a considerable compensation for the 
extra computational work per step by reducing the number of steps? An answer to 
this question is given in this section. Numerical results obtained in runs with real 
meteorological data are used as illustrations of our statements. These data cover the 
period from 25.12.1979 to 10.01.1980 and have been collected within project EMEP 
(European Monitoring and Evaluation Program) in which practically all European 
countries participate. 

Many runs have been carried out with the use of the CSCFM (constant stepsize 
constant formula method) option and with the use of the VSVFM option of ADM. 
We could present many tables with numerical results which illustrate clearly the 
efficiency of the latter option. However, we decided to follow another way by which 
not only is the efficiency shown but also it is explained why the VSVFM option is so 
efficient for our class of problems. Two-dimensional models are in use in the first 4 
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TABLE 5.1 

The Parts of the Total Computing Time (in Percent) Used by the Subroutines of 
Package ADM When the Two Options in This Package Are Applied” 

Subroutines CSCFM option 

Part A + Part B 77% 
Part C 3 % 

Overhead 20 ‘Xl 

VSVFM option 

72% 
I 0 %I 
18% 

’ The EMEP data have been used in this run for the period from December 25, 1978, to January 31, 
1979 (38 days). The calculations have been carried out on CRAYI at Reading, England. 

experiments (these are formally obtained by K, = 0), while some results obtained in 
runs with three-dimensional models are given in the last two experiments. 

EXPERIMENT 1. We have run (1. I)--( 1.7) with meteorological data for January 
1979 on CRAY 1 with option ON = F. The CFT compiler with ON = F produces a 
chart giving the computing times taken by the different subroutines during the run. 
The results are given in Table 5.1. The computing time taken by the subroutines 
calculating U, v, Q and Q* is given as “Overhead” in Table 5.1. The computing time 
taken for input-output operations is also included in the Overhead. 

Table 5.1 shows clearly that the computational work in Step C (of Algorithm 2.1) 
is increased about 3 times when the VSVFM option is used (compared with the 
computational work in Step C for the CSCFM option). Nevertheless, the 
computational work in Step C for the VSVFM option is still a very small part of the 
total computational work for the run with the VSVFM option (only 10%). Thus, this 
experiment indicates that the total computing time will be reduced (and, moreover, the 
reduction will be considerable) if the number of time-steps is reduced when the 
VSVFM is applied. This statement is based on the fact that the two options differ 
only in Step C of Algorithm 2.1. The subroutines, which carry out the operations in 
the other parts of Algorithm 2.1, are identical for the two options. The same is true 
for the subroutines, which perform the operations included in the Overhead 
(Table 5.1). This means that the implementation of the time-integration is the only 
difference between the two options and, moreover, the computing time for the time- 
integration part is a very small part of the total computing time also when the 
VSVFM option is in use. By our next experiment we shall show that a very 
considerable reduction of steps should be expected when the VSVFM option is 
applied and we shall explain why this should be so. 

EXPERIMENT 2. Since M = N = 16 and Ax = Ay = 15OOOOm in our space 
discretization and since the maximal length of the wind velocity vector for January 
1979 was 43 m/set (3.15) shows that the CSCFM option based on scheme F, can be 
used with a stepsize At = 1800 set (a little larger stepsize can be used with F, but this 
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TABLE 5.2 

Numerical Results Obtained with the EMEP Data from December 25, 1978, to 
January 31, 1979 (38 days) on an IBM 3033 Computer under the FORTH Compiler” 

Number of Number of 
Option time-steps rejected steps 

CSCFM 1824 0 
VSVFM 931 0 

’ The CPU-time is measured in seconds. 

Average length of 
stepsize (in min) 

30.0 
58.78 

CPU-time 

548.29 
296.75 

causes some problems with the reading of the meteorological data; data fields must 
be read at the end of every sixth hour). Numerical results obtained with the VSVFM 
and CSCFM (based on 1;J options are given in Table 5.2. It is seen that the VSVFM 
option performs in a nearly optimal way. The average stepsize for this option is 
nearly twice as large as that for the CSCFM option. Since the time-integration part is 
only a small part of the total work, the reduction of steps (achieved by the flexible 
VSVFM option) leads to a very considerable reduction of the computing time. A 
careful examination of the variation of the stepsize shows that the VSVFM option 
uses small stepsizes around the points of the time-interval where the length of the 
wind velocity vector is large (see also Experiment 6). However, there is no need to 
use such small step-sizes when the length of the wind velocity vector is not large and 

TABLE 5.3 

Numerical Results Obtained during a Long Run with the 
VSVFM Option on CRAYl in Reading, England” 

Interval of 
integration 

Length of 
the interval 

(in min) 
Number of 
time-steps 

Number of Average 
rejected stepsize 

steps (in min) 

25.12.1978-31.01.1979 54720 931 
01.02.1979-28.02.1979 40320 706 
01.03.1979-31.03.1979 44640 710 
01.04.1979-30.04.1979 43200 592 
01.05.1979-31.05.1979 44640 613 
01.06.1979-30.06.1979 43200 533 
01.07.1979-31.07.1979 43200 505 
01.08.1979-31.08.1979 44640 551 
01.09.1979-30.09.1979 43200 594 
01.10.1979-31.10.1979 44640 644 
01.11.1979-30.11.1979 43200 712 
01.12.1979-31.12.1979 44640 876 
25.12.1978-31.12.1979 535680 7967 

0 
3 

0 
3 

58.78 
57.11 
62.87 
72.97 
72.82 
81.05 
88.40 
81.02 
72.72 
69.32 
60.67 
50.96 
67.23 

’ The EMEP data have been used in this run. 



TRANSPORTOFAIRPOLLUTANTS 293 

the code is able to increase quickly the stepsize. This explains why the implemen- 
tation of a VSVFM option is very useful for problems of the class which is of interest 
for us. 

EXPERIMENT 3. The previous experiment shows that the performance of the 
VSVFM option is very efficient when the time-interval is relatively short. The next 
question is: What will happen if the time-integration interval is long? The EMEP data 
have also been used in a run with a time-interval from 24.12.1978 to 3 1.12.1979 (i.e., 
the length of the time-integration interval is 372 days; the corresponding length in the 
previous experiments was 38 days). The run, which is described below, has been 
carried out on CRAYl at ECMWF (European Centre for Medium Range Weather 
Forecasts, Reading, England). The results are given in Table 5.3. It is seen that the 
average length of the stepsize is larger than 1 hour. The total number of steps is 
7967. The computing time for the whole run was about 9 min. The number of 
rejected steps is an important factor when the efficiency of a VSVFM option is 
considered. This number is very small in this run (13 rejected steps or 0.16% of the 

s-l 

I’““““I”“““‘I”“““‘I”“““‘I 
0 3 6 9 42 45 

calculated so2 

FIG. 5.1. Comparison of the mean values (for 1979) of sulphur di-oxide calculated by the VSVFM 
option of package ADM with the mean values of sulphur di-oxide observed at different EMEP stations. 
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0 2 3 4 5 6 1 

calculated so4 

FIG. 5.2. Comparison of the mean values (for 1979) of sulphate calculated by the VSVFM option of 
package ADM with the mean values (for 1979) of sulphate observed at different EMEP stations. 

total number of successful steps). Some examination of the wind velocity fields 
indicates that the same run with the CSCFM option based on scheme F, will require 
27856 steps and more than 25 min CPU time on CRAYl. 

EXPERIMENT 4. The following question is very important: Are the results 
obtained by the VSVFM option reliable ? Many different experiments have been 
carried out in order to answer this question. A very straightforward test is the 
comparison of the calculated results with measured results at different stations 
located in the countries participating in the EMEP project. Many such tests have 
been carried out (a detailed report about the results being in preparation). Only the 
results of the comparisons of SO, and SO, concentrations for 1979 are given here 
(Figs. 5.1 and 5.2, respectively). Each EMEP station is denoted (on Figs. 5.1 and 
5.2) by an integer. Two coordinates are attached to each station; the abscissa is the 
calculated result, while the observed result is the ordinate. It is seen from the figures 
that the coincidence between the calculated results and the observed results is quite 
satisfactory. Thus, the comparison indicates that the results obtained by the use of the 
VSVFM option are reliable. 
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EXPERIMENT 5. Three dimensional runs have also been carried out. It must be 
emphasized that the use of PECE schemes in this situation is possible only because 
the diffusion terms are treated in a special way in package ADM, by which the 
stability restrictions caused by these terms are removed ([48]). If the special 
procedure for treatment of the diffusion terms is not applied, then the main difficulty 
will be caused by the fact that dz is very small (dz = 300m; compare this with 
Ax = dy = 150000m). 

A run with the EMEP data from 25.12.1978 to 31.01.1979 (on an IBM 3033) 
takes approximately 81 min CPU time when the CSCFM option is in use. The CPU 
time for the same run with the VSVFM option is nearly halved. 

EXPERIMENT 6. We have already mentioned that in the general-purpose codes for 
solving systems of ODES the stepsize is varied only by the use of the accuracy checks 
(some of them are similar to (3.9)-(3.10); others are more complicated, [ 13, 35 1). 
Exploiting the specific features of the systems of ODES arising after the space 

?,I , , , , , ] , , 
0 5 40 4s 20 25 30 35 40 

THE TIHE AXIS (THE TIME IS MEASURED IN DAYS) 

FIG. 5.3. The variation of the time-stepsize (measured in minutes) during a run with the EMEP data 
for the period from December 25, 1978 to January 3 1, 1979 (38 days). The curve given in this figure 
should be compared with the curve in Fig. 5.4. It is seen that the stepsize is normally large when the 
norm of the wind velocity vector is small and vice versa. 
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r 
THE TIME AXIS (THE TIME IS MEASURED IN DAYS1 

FIG. 5.4. The variation of the norm of the wind velocity vector on the space domain under 
consideration (measured in m/set) found by the use of the EMEP data for the period from December 25, 
1978 to January 31, 1979 (38 days). The curve given in this figure should be compared with the curve 
in Fig. 5.3. It is seen that if the norm of the wind velocity vector is large, then the stepsize selected by 
the code is normally small and vice versa. 

discretization of PDEs describing long-range transport of air pollution, we have 
introduced a second check, (3.15), by which an attempt to carry out a stability 
control is made. The implementation of this check increases the computational work 
per step. Therefore it is necessary to justify the introduction of this check. An 
experiment with EMEP data from 25.12.1978 to 3 1.01.1979 has been performed in 
order to show that, since the basic PECE schemes are very accurate (the orders of 
the correctors are up to 4), the stepsize is often restricted by check (3.15). This 
means that: if check (3.15) is not introduced, then the code will take into account the 
stability restrictions by rejecting many steps, [28, 531, which is very inefficient and 
should be avoided ifpossible. It is obvious that if the stepsize is mainly restricted by 
(3.15), then the stepsize will normally be large when the norm of the wind velocity 
vector is small and vice versa. It is also obvious that this will only be a tendency 
because many other factors have influence on the stepsize selection strategy too (e.g., 
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the accuracy, the formulae used, the deposition rate, among others). Nevertheless, this 
tendency is very clearly observed when Figs. 5.3 and 5.4 are compared. Similar 
results were obtained in many other runs. The efficiency of the stability check in the 
efforts to keep the number of rejected steps small is also clearly seen in the long run 
shown in Table 5.3 (look at the numbers of rejected steps for the different months). 

6. SOME CONCLUDING REMARKS 

Several different questions may be asked in connection with our choice of 
algorithms and with the implementation of the selected algorithms. By the remarks 
given below we shall try to answer the questions, which have in our opinion to be 
answered. 

Remark 6.1. On the use of implicit formulae. The PECE schemes as defined by 
(3.1~(3.4) are explicit methods (there are no unknown quantities on the right-hand 
side of the formulae used in the computational process). We shall assume here that 
an implicit method is applied together with some Newton-like iterative process which 
require solving systems of algebraic equations. Under this assumption the use of 
implicit formulae in the time-integration part of Algorithm 2.1 seems to be 
prohibitive for long-range transport models of our type. Indeed, the meteorological 
data are often given in intervals of 6 hours. This imposes an upper bound on the 
stepsize for implicit methods (in order to avoid a loss of information). On the other 
hand, the PECE schemes can be used (also if the interval of integration is very long) 
with an average stepsize of about 1 hour. This indicates that the total number of steps 
can not be reduced by a factor larger than 6 when accurate implicit methods are used 
instead of the PECE schemes chosen by us. Our calculations show that such a 
reduction is far from sufficient to compensate for the increase of the computational 
work per step with the implicit methods due to the fact that large systems of algebraic 
equations must be solved at each time-step. 

Remark 6.2. On the use of general-purpose software for ODES. There exist many 
excellent general-purpose codes for solving ODES ([2-5, 8, 17, 20-22, 27-32, 381). 
However, the direct implementation of such a code in the case where long-range 
transport of air pollution is studied is not very attractive. The codes using implicit 
methods (with a Newton-like iteration) can not be applied in our case (see the 
previous remark). In the codes using explicit methods (including PECE schemes) as a 
rule formulae of Runge-Kutta type or Adams predictor-corrector schemes are 
adopted ([8-17, 20-22, 27, 29, 35, 541). The former methods are not suitable 
because they require many evaluations of the right-hand side. In our case an 
evaluation of the right-hand side is equivalent to the space discretization + a 
considerable part of the overhead (see Table 5.1). This means that the evaluation of 
the right-hand side is a very expensive process. The use of formulae of Adams type 
only is not suitable because these have poor stability properties close to the 
imaginary axis (this is especially true for formulae of high order). 
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Another reason for development of a special software for our class of problems is 
the fact that it is possible to incorporate a very cheap and reliable stability check for 
the system of ODES arising after the space discretization. In the general purpose 
software for solving ODES the stepsize is normally selected by using accuracy 
checking criteria only. A good code will produce stable results also if only the 
accuracy is taken into account in the stepsize selection ([28]). However, the time- 
integration will be carried out with many rejections of time-steps (see Sections 3 
and 5). Our numerical results indicate that the efficiency is increased considerably 
because an attempt to combine the accuracy criteria with some stability criteria is 
carried out in the time-integration part of package ADM. 

Remark 6.3. On the use of some other time-integration schemes. Since the 
evaluation of the right-hand side of the system of ODES is very expensive in our 
situation (see the previous remark), it seems to be advantageous to use a single 
formula (where 1 evaluation per step only is needed) instead of the PECE schemes 
(where 2 evaluations per step are carried out). This means that the computational 
work per step for the PECE schemes is, roughly speaking, twice as large as that for 
the single formulae. However, it turns out that the number of steps can also be 
reduced (roughly speaking by a factor of 2) when PECE schemes are used. This is so 
because 0 < h. ,mag < 1 for a single formula of type (3.1), while 0 < himag < 2 for the 
PECE schemes ([ 18, 47, 5 11) and, moreover, it is possible to construct schemes with 
hmag = 2. The use of PECE schemes has at least two extra advantages: (i) the known 
functions (u, U, as well as the terms in Q and Q* that depend on the time only) are 
calculated only once per step and (ii) a cheap and reliable error estimation is 
obtainable. The question whether it is profitable to apply more complicated schemes 
(P(ECy, PE(CEyy or not is open. The answer is positive if one could construct a 
particular algorithm of this type with himag z m for the P(EC)m schemes or 
Lag =: m + 1 for the PE(CE)” schemes. If such schemes with m > 2 (or m + 1 > 2 
in the latter case) can be constructed, then they will be even more efficient than our 
schemes (the number of steps will be reduced and this will lead to a reduction of the 
number of evaluations of the known functions U, L’, Q and Q*). We plan to include 
such schemes in package ADM. 

Remark 6.4. On the error tolerance. The use of the error tolerance TOL 
(Section 4) is based on the assumption that the errors made in the space 
discretization (Step A, Step B, Step D of Algorithm 2.1) are smaller than TOL. We 
have no reliable checking criteria for the errors made during the space discretization. 
This implies that one should not specify a stringent error tolerance TOL. In all runs 
described above TOL = 0.1 was used. It should also be mentioned that our accuracy 
check is rather crude. When only a system of ODES is solved, it is possible to 
attempt to estimate the global discretization error ([ 13, 351). In our opinion such an 
attempt is justified only in conjunction with an attempt to estimate the global 
discretization error made during the space discretization process. 

Remark 6.5. On the use of other space discretization algorithms. The VSVFMs 
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can be applied in the time-integration part also when other space discretization 
algorithms are used in Step A, Step B and Step D of Algorithm 2.1 (instead of the 
pseudospectral Fourier discretization). One could use, for example, finite differences 
or finite elements. The use of a space discretization with any of these classes of 
methods may be combined with application of some error estimation concerning the 
space discretization part of the solution process (and this is an advantage of these 
methods). However, it may be necessary to use other time-integration schemes. It 
may even be necessary to use different time-integration schemes; some in connection 
with the advection terms. others in connection with the diffusion terms. This means 
that it may be necessary to divide a global time-step into several fractional steps (125, 
391). It should be mentioned that the use of fractional steps may sometimes be 
necessary even when the pseudospectral Fourier discretization is in use (if the special 
procedure from [ 48 ] can not be applied). 

Remark 6.6. Main conclusion. The numerical results indicate that the implemen- 
tation of a VSVFM option in a software for simulating long-range transport of air 
pollution in the atmosphere leads to a considerable increase of efficiency. Therefore 
such an option is useful when long runs with real meteorological data are carried out. 
On the other hand, a CSCFM option may be more efficient when the time-integration 
interval is short and/or when it is easy to determine an optimal value for the constant 
stepsize At by which a stable computational process should be expected. This means 
that both options should be kept in an attempt to allow more flexibility and to permit 
achieving optimal results in a wide variety of situations that may arise in practice. 
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